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Abstract
Digital platforms need reliable ways to distinguish credible content from mis-

information, yet existing review and rating systems are either too cheaply manip-
ulated and thus require centralized moderation or too speculative. We introduce
a novel decentralized solution that maps reputation as unique Pythagorean lattice
points. This geometric approach transforms stake-backed reputation measurement
from a speculation game into meaningful territorial signaling, where proximity in-
dicates similar reputation levels and monetary values. With real stakes involved,
manipulations become costly and positions can be used to symbolize social status
and connections. The mechanism operates as a permissionless and censorship-
resistant public good that can withstand major currency crises, and the underlying
mathematical principles can be applied to any opposing binary choices for mea-
surements beyond reputation.

1 Introduction

Reputation is perhaps our oldest social technology — the invisible yet invaluable cur-
rency that enables trust between strangers and cooperation at scale that brought hu-
manity to where it is today. Traditional societies often relied on repeated interactions
within small communities to build trust, yet these methods don’t usually apply to our
global digital world where identities are fluid and communities are vast. Without re-
liable mechanisms to effectively measure and broadcast reputation, digital social plat-
forms become fertile grounds for misinformation and fraud. When anyone can create
content with equal apparent authority — whether they’re a seasoned expert or a co-
ordinated bot network — the signal-to-noise ratio plummets. The problem is likely
to get worse as AI makes convincing but false content cheaper to produce than ever
before.

Various systems have attempted to address this issue. Traditional rating and re-
view mechanisms have helped to some extent, but they usually lack real economic
stakes and thus can be cheaply manipulated. Centralized oversight is needed to reduce
spams and manipulations, leaving reputation measurement in the hands of a single
authority. Prediction markets like Polymarket do involve real stakes and are thus use-
ful in measuring probability of verifiable events, but they become speculative when it
comes to subjective choices that can’t be objectively settled [1] [2]. In this paper, we
propose a novel solution that turns this type of speculation game into a decentralized
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social territorial game. The solution is a new type of market maker that adds spe-
cific constraints to the two-dimensional Spherical market scoring rule [3] [4] [5] [6].
This market maker allows any entity’s reputation to be mapped as exclusive positions
via Cartesian coordinates. These positions are backed by real economic stakes, mak-
ing them more credible and costly to manipulate, and their geometrical significance
provides unique social and territorial value, encouraging transactions to be based on
thoughtful commitments rather than pure speculation.

2 Position

Let us begin by defining each entity’s position as (x,y) on the Cartesian plane. Here,
x and y are respectively the amount of Distrust and Trust votes placed towards an
entity, satisfying the following cost function:

C(x,y) =
√

x2 + y2, x, y≥ 0

This cost function represents the Spherical market scoring rule (SMSR) for the
two-dimensional Euclidean space [5] [6], where marginal prices for buying and selling
Distrust and Trust votes are continuous and monotonic. With two outcomes, these
prices would sit on the unit circle instead of the unit sphere, and can be computed by
taking the partial derivatives of the cost function1:

px =
x√

x2 + y2
, py =

y√
x2 + y2

, px, py ∈ [0,1]

Like other market scoring rules, the SMSR can be used as an automated market
maker for binary options, with its convex and path-independent cost function ensur-
ing smooth pricing and bounded losses for the market maker [5] [6]. The problem is
that these mechanisms don’t work too well for binary choices that can’t be objectively
settled (e.g., Distrust/Trust). From the voters’ perspective, they would instead be buy-
ing votes at px or py only to sell it higher to someone else, turning the market into a
speculation game.2

What we need is an alternative mechanism where voters and entities also benefit
from non-monetary value from trading or receiving votes, in particular social value
through status, connections, governance and commitments. To accomplish this, we
created a specialized version of the two-dimensional SMSR by adding the following
two spatial constraints:

1. Scarcity: Only positions where x, y, and C are positive integers are allowed.
That is, instead of x, y≥ 0, we now have x, y,C ∈ Z+. Consequently, instead of
px, py ∈ [0,1], we now have px, py ∈Q ∩ (0,1).

2. Exclusivity: Each unique position (x,y) can only be occupied by at most one
entity at any given time.

From the constraints above, we can conclude that any valid position (x,y) will
now be the Pythagorean lattice point for a unique Pythagorean triple (x,y,C). For
each entity, C represents their market value and also the total cost incurred by voters.
Marginal prices px and py are now discrete and restricted to rational numbers in the

1While the two-outcome spherical market scoring rule is typically expressed in vector form as C(q) = ||q||
with price vector p = ∇C(q) = q

||q|| where q = (x,y), we use the scalar form C(x,y) =
√

x2 + y2 throughout
this paper for better geometrical clarity.

2The unique Bayesian-Nash Equilibrium would have all voters decline to buy votes at any positive price [1].
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interval (0,1). For convenience and ease of future references, we name this type of
market maker as the Pythagorean market maker (PMM).

3 Reputation

We define each entity’s reputation, R = py
2, as a percentage score such that R ∈

(0%,100%). The closer R gets to 100%, the more reputable the entity becomes. How-
ever, R can never actually reach 0% or 100%, as py can never reach 0 or 1 due to
our Scarcity constraint. This is intuitive from two perspectives. From a philosophi-
cal perspective, even the most reputable entities may not be completely honest all the
time, and even the least trustworthy entities may not always tell lies. From a proba-
bility standpoint, the reputation score R works like an implied probability for binary
outcomes under the two-dimensional SMSR3, but since Trust and Distrust are our sub-
jective perceptions rather than deterministic facts, the probability can never reach 0%
or 100%. Hence, the mathematical bounds on any entity’s reputation naturally ac-
knowledge and reflect that the world is full of uncertainties, and that there are limits to
human and machine judgement.

Geometrically, we can find entities with the same reputation by drawing a straight
line from the origin through each position out to infinity. Positions that sit on the
same line will always have the same reputation, and each of these lines is a unique
reputation line. As an example, in Figure 1 below we can see that entities with
position (3,4) and (6,8) will both be on the R1 = 64% reputation line, whereas the
entity with position (8,6) is on the R2 = 36% reputation line.

x (Distrust votes)

y (Trust votes)
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R1 = 64%

R2 = 36%

Figure 1: Reputation lines for positions (3,4), (6,8) and (8,6).

Mathematically, it’s obvious that any positions (kx,ky) where k > 0 such that
kx,ky ∈ Z+ will have identical reputation. Hence, the Exclusivity constraint enables

3Recall that py is the marginal price of buying Trust votes. Under the context of binary options, its reciprocal
1/py =C/y is the marginal payoff of Trust votes, so neglecting fees and time value of money, this ratio of price
to payout, py

2, gives you the implied probability of that the outcome will be ‘Trust’.
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voters to signal their intensity of commitment, through different values of k, upon enti-
ties on the same reputation line. For example, Alice might create Charlie the dishonest
yoga teacher’s market at (24,7) with a market value of $25, and Bob the dishonest fi-
nancial influencer’s market at (2400,700) with market value of $2,500. Under this sce-
nario, despite both Bob and Charlie having same reputation of approximately 7.84%,
the stakes that Alice committed for Bob is 100 times greater, signaling to society that
Bob has greater reach and thus greater capacity for harm, or that Alice has substan-
tially higher confidence in her assessment of Bob’s untrustworthiness. This strength of
commitment also applies to voters themselves as a way to broadcast social status. For
instance, Alice could create her own market at (700,2400) instead of (7,24) to signal
that her 92.16% reputation is more credible than positions of lower market value on
her reputation line. From entities’ perspective, this mathematical property somewhat
reflects the sociological reality that while higher market value signals greater social
status, it also amplifies social impact from both supporters and critics.

4 Transactions

The PMM supports two types of transactions – creating a new entity’s market like
what Alice did to Bob and Charlie at an unoccupied position (x∗,y∗), or moving an
existing entity from position (x,y) to an unoccupied (x′,y′). Voters spend USDC to
create markets or buy votes, or collect USDC by selling votes. The cost calculation
∆C, ignoring fees, works as follows:

∆C =

{√
x∗2 + y∗2 for market creation

C(x′,y′)−C(x,y) for buying/selling

With a one-percent transaction fee ( f = 0.01), the actual cost (or revenue if cost
is negative) becomes:

Cost =

{
∆C · (1+ f ) for buying/market creation (∆C > 0)
∆C · (1− f ) for selling (∆C < 0)

From voters’ perspectives, transactions under this market maker are incentivized
to be based on authentic social commitments, as opposed to pure speculation. While in
many cases they can still make a handsome profit, that may no longer be the primary
motivation as speculative strategies are inherently restrictive. With less speculation,
voters face lower financial risk in general as they are more likely to break even by
selling back their vote holdings if they change their mind about an entity, because it
would typically require thoughtful commitments from other voters to move the entity
away from that position. This creates a safer environment where honest voters can
trust that most transactions are genuine and thus positions do usually reflect reality.

That said, it’s important to note that market creators don’t benefit from the ‘refund
policy’ mentioned above, as market creation can’t be undone. Once an entity’s market
is created, it exists forever onchain. If you create Alice’s market at (7,24), you cannot
sell back to (0,0) to recover your full investment. The most you can reduce her position
to is the smallest Pythagorean lattice point (3,4) or (4,3), meaning market creators
always bear some irreversible cost for bringing an entity into the system.

4.1 Manipulations

With real stakes involved, reputation data under the PMM is arguably more credible
than traditional rating and review systems, especially for positions with higher market
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values where manipulations become increasingly costly. Consider our earlier example
with Charlie at (24,7) and Bob at (2400,700), both with 7.84% reputation. Char-
lie could fake his reputation to 97.26% by spending just $120 to reach (24,143), but
Bob would need to spend $12,000 to achieve the same result at (2400,14300) and a
market value of $14,500 — 100 times more expensive than Charlie. Likewise, imag-
ine David, a highly reputable figure at (24000,143000) with 97.26% reputation and
$145,000 market value. An attacker who wants to maliciously move David to the
7.84% reputation line would need to spend at least $512,500 - $145,000 = $367,500,
to move him to (492000,143500).

4.2 Visualizations

We can visualize an entity’s market value as the Euclidean distance between their
position (x,y) and the origin, and their reputation change via the angle θ it makes with
the x-axis, where θ ∈ (0, π

2 ). A higher θ corresponds to an increase in reputation, and
a simple way to achieve this is through a vertical movement from (x,y) to (x,y′) where
y′ > y. This is shown in Figure 2 below, where both Charlie and Bob achieve identical
angular changes from θ to θ ′, yet Bob’s movement is far more costly as he needs to
travel a greater distance to reach his new position at R′.

x (Distrust votes)

y (Trust votes)

24 2,400
0

7

143

700

14,300

θ

θ ′ Charlie at
(24,7)

Charlie at
(24,143)

Bob at
(2400,700)

Bob at
(2400,14300)

R≈ 7.84%

R′ ≈ 97.26%

[FIGURE NOT TO SCALE]

Figure 2: Reputation movements from approximately 7.84% to 97.26% for both Bob
and Charlie.

Similarly, a lower θ indicates a drop in reputation. A simple way to achieve
this is through a transaction that moves the target entity horizontally from (x,y) to
(x′,y) where x′ > x. In the example of David who’s positioned at (24000,143000),
the attacker could decrease his reputation by moving him to (x′,143000) instead of
(492000,143500) where x′ > 24000, and the possible values of x′ can be searched via
the following steps:
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1. Find all factor pairs ( f1, f2) of 1430002 where f1 · f2 = 1430002, f1 =C′− x′,
f2 =C′+ x′ and f1 < f2.4

2. Filter for x′ > 24000 by computing x′ = ( f2− f1)/2 for each factor pair and
selecting those satisfying the constraint.

For our example, 1430002 has a total of 151 factor pairs where x′> 24000. In other
words, if an attacker or an opposing voter wants to decrease David’s reputation without
buying any Trust votes, there are 151 possible ways to do so, ranging from small
commitments that slightly reduce David’s reputation (e.g., x′ = 32175), to expensive
ones that achieve severe reputation damage, where x′ can be as large as approximately
5.11 billion.5 In Figure 3 below we demonstrate two examples, one with David’s
reputation reduced to R′≈ 88.22% at a cost of $7,245, and the other with his reputation
dropping below 10% to R′′ ≈ 9.03% at a cost of $330,750.

x (Distrust votes)

y (Trust votes)

24K 52K 454K

143K

θ θ ′ θ ′′

David at
(24000, 143000)

David at
(52245, 143000) David at

(453750, 143000)

R≈ 97.26% R′ ≈ 88.22%

R′′ ≈ 9.03%

[FIGURE NOT TO SCALE]

Figure 3: Reputation movements from approximately 97.26% to 88.22%, and 97.26%
to 9.03% for David.

4.3 Monetary Profit

For profit-seeking voters, a relatively simple strategy is to ‘be early’ to either increases
in the target entity’s reputation with no changes to Distrust votes, or decreases in rep-
utation with no changes to Trust votes. We can bring David back again to elaborate on
the latter scenario using an example related to Figure 3 above.

1. Alice moves David from (24000, 143000) to (52245, 143000) by spending
$7,245 for 28245 Distrust votes.

4This can be done via a direct approach that checks all factors from 1 to 143000, or a prime factorization
approach [7] that’s substantially more efficient. For the latter, we would first compute 143000 = 23 ·53 ·11 ·13,
then derive 1430002 = 26 ·56 ·112 ·132 and generate all factors directly with minimal additional computation.

5Because 143000 is an even number, the largest Pythagorean triple can be written in the form of (n2 −
1,2n,n2 +1), which in this case is (5112249999,143000,5112250001) with n = 71500.
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2. A wealthy Ethan thinks that David is a scammer, so he moves him to (453750,
143000) by spending $323,505 for 401505 Distrust votes.

3. Being a profit-maximizing voter, Alice sells 18315 Distrust votes, moving David
from (453750, 143000) to (435435, 143000), netting a profit of $17,435 - $7,245
= $10,190 and now holds 9930 Distrust votes.

In this example, it’s important to note that Alice might prefer David’s reputation
not to decline beyond x > 453750, where she could get ‘stuck’ as gaps between con-
secutive Pythagorean lattice points may exceed her portfolio of 28245 Distrust votes.
As such, profit-maximizing voters anticipating substantial reputation swings may em-
ploy sophisticated hedging strategies, buying opposing vote types to reduce portfolio
lock-up risk. These strategies are more complicated as they often require navigating
through the irregular and complex patterns inherent in prime factorizations, and thus
won’t be discussed further in this paper.

5 Reputation Map

With the examples and illustrations provided above, one could view the reputation sys-
tem as a dynamic reputation map where entities compete for positions that are both
socially and economically valuable, in particular those that are close to the y-axis.
From a social perspective, these positions are useful not only as proof of reputation
and status, but also a gateway for connecting with other nearby entities. In particular,
entities could signal their willingness to connect by positioning themselves close to
others, a phenomenon that reflects the age-old principle that ‘birds of a feather flock
together.’ Our system naturally facilitates this geometrically as spatial proximity indi-
cates similar reputation and market values.

As such, we might see different social clusters form and evolve over time, and with
continuous fiat inflation, lower market value regions are likely to become increasingly
crowded, creating a continuously expanding reputation map under Euclidean geom-
etry. Because there are infinitely many Pythagorean triples [8], the map can expand
indefinitely, making the system resilient to major currency devaluation. In the hypo-
thetical and unlikely case that the US dollar experiences hyperinflation, entities can
simply reflect this by increasing their dollar-denominated stakes to preserve the real
value of their position.

6 Decentralization

The Tenbin protocol is decentralized and thus permissionless, allowing anyone to cre-
ate a reputation market for any entity without requiring approval from that entity or
other centralized authorities. Specifically, each entity is uniquely identified via an
arbitrary onchain key platformID at the protocol layer, and will be mapped to the
corresponding ID of some centralized social platform (e.g., X, Instagram or TikTok)
at the application layer. Market creators interacting with our frontend bear the respon-
sibility of correctly entering the target entity’s social platform ID as the platformID,
as only those that correspond to existing accounts on that platform will be mapped and
provided with context in our interface. Creators who misidentify targets risk creating
markets that voters will ignore, and future users of that social platform whose IDs
were mistakenly used as platformID can have their positions adjusted by themselves
or other voters as needed.
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This permissionless design contributes to the protocol’s censorship resistance. If
our frontend or any other interface becomes unavailable or compromised, the underly-
ing mechanism continue operating uninterrupted through direct smart contract interac-
tions. All transactions and positions remain permanently visible onchain, creating an
immutable record of reputation assessments that no centralized authority can control.
This transparency fosters a bottom-up ecosystem where other applications can build
different mechanisms on top of this reputation layer, including for example incentive
distribution, content curation and governance.

7 Future Works

Future works of the Tenbin protocol include both vertical integrations to enhance terri-
torial incentives within the system, as well as horizontal expansions into decentralized
platforms and measurements beyond reputation.

Vertical integrations may involve spatial features at the protocol level where each
entities’ position unlocks additional functionalities — for example, as a governance
anchor for surrounding regions. Horizontal expansions may include native integration
with decentralized social platforms (e.g., Farcaster), and applying the universal math-
ematical principles under the PMM to other pairs of orthogonal preference dimensions
based on society’s needs. These include Like/Dislike axes for individuals, companies,
governments and countries to measure their popularity, and Buy/Sell for stocks, real-
estates and other asset classes to weigh their value. Each of these pairs creates its own
two-dimensional Euclidean space where different types of entities can be thoughtfully
evaluated via stake-based data points that are hard to manipulate.

8 Conclusion

Digital platforms struggle with a basic problem: how to effectively determine what
and who to trust online without a trusted party? Traditional rating systems can be
manipulated at a small cost because they lack real stakes and thus require centralized
enforcements. Prediction markets avoid this through economic backing, but often be-
come speculation games when applied to subjective judgments. We’ve proposed a
decentralized solution via the Pythagorean market maker that turns this type of spec-
ulation game into a territorial one where entities compete for meaningful positions on
a reputation map. Economic stakes remain central as they help to mitigate manipula-
tions, but geometric properties enable rich social signaling beyond simple betting.

This protocol operates as a permissionless and censorship-resistant public good,
ensuring no single entity can control how society measures trust and reputation. The
underlying mathematical principles extend well beyond reputation measurement, en-
abling thoughtful evaluation of any opposing binary preferences, and are also resilient
against major currency crises.
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